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Abstract: Optical coherence tomography (OCT) demands massive data processing and real-time
displaying during high-speed imaging. Current OCT imaging software is predominantly based
on C++, aiming to maximize performance through low-level hardware management. However,
the steep learning curve of C++ hinders agile prototyping, particularly for research purposes.
Moreover, manual memory management poses challenges for novice developers and may lead to
potential security issues. To address these limitations, OCTSharp is developed as an open-source
OCT software based on the memory-safe language C#. Within the managed C# environment,
OCTSharp offers synchronized hardware control, minimal memory management, and GPU-based
parallel processing. The software has been thoroughly tested and proven capable of supporting
real-time image acquisition, processing, and visualization with spectral-domain OCT systems
equipped with the latest advanced hardware. With these enhancements, OCTSharp is positioned
to serve as an open-source platform tailored for various applications.
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1. Introduction

Optical Coherence Tomography (OCT) has undergone extensive development over the past three
decades. As modern hardware becomes more advanced, high-speed imaging often requires
massive computational power to enable high-throughput data acquisition, processing, and
visualization. A state-of-the-art Spectral Domain OCT (SD-OCT) can typically reach hundreds
of kHz line rate with CMOS cameras, and Swept-Source OCT (SS-OCT) can perform MHz
acquisition with GHz photodetectors [1–3]. To be able to achieve real-time image processing
and display during high-speed imaging, Field Programmable Gate Arrays (FPGAs) and Graphic
Processing units (GPU) are two common approaches for data processing pipelines [4]. However,
compared to the FPGA method, GPU implementation is more expandable and flexible for agile
development and modifications [5–8]. Although commercially available OCT systems already
provide the software along with the devices, their source code is usually not accessible for custom
modifications, and hardware customization or upgrade is usually not possible. As a result, it
poses a challenge for research groups that aim to customize OCT for various applications, as the
software may need to be modified to accommodate specific hardware or scanning protocols.

An open-source OCT imaging software would greatly benefit the OCT research community
in exploring applications without limitations, especially for research groups with limited
programming capabilities. Usually, C++ is considered the optimal choice for real-time imaging
due to its efficiency and capability for low-level management of hardware resources. For example,
OctProz is an OCT image-processing software that allows users to implement custom hardware
binding [9]. Vortex is an open-source Application Programming Interface (API) with C++ or
Python plug-in of hardware control and data processing for real-time OCT imaging software
development [10]. However, C++ lacks built-in automatic memory management, commonly
referred to as Garbage Collection (GC). Consequently, the developer is required to engage in
manual pointer-based dynamic memory management. This becomes particularly challenging
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in a multi-threaded environment, potentially leading to memory leaks. On the other hand, C#
is a memory-safe language with automatic GC mechanism. In 2022, the National Security
Agency (NSA) released guidance, suggesting a shift from C/C++ to memory-safe languages,
such as C#, Java, or Rust to prevent vulnerabilities in software [11]. The “unsafe code” feature in
C# allows pointer reference if necessary and the “fix” statement can guarantee memory safety
during the pointer operation. [12]. In addition, C# is a managed programming language that
is open-source, robust, easy to learn, and backed by a vast number of libraries for additional
functional expansions, including C#’s native graphical user interface (GUI) framework and many
other powerful APIs.

To the best of our knowledge, a complete OCT imaging solution in C# that consists of
synchronized hardware control, high-speed data acquisition, GPU-based real-time processing,
and image visualization has not been investigated, majorly due to the concern about “Stop-the-
world” GC events. In this study, OCTSharp is developed based on .NET C# as a complete and
ready-to-use software that aims to reduce programming complexity and create a user-friendly
platform for interactive, intuitive, and high-performance OCT imaging software development
[13].

2. Method

2.1. Hardware configuration

The hardware configuration of the SD-OCT for testing OCTSharp is shown in Fig. 1(A). The
SD-OCT imaging system consists of a broadband light source (a superluminescent LED at
1310 nm or 850 nm), a fiber-based interferometer, a linear camera, a Frame Grabber (FG), a
Digital Acquisition Card (DAC), and a host computer (PC) equipped with Graphics Processing
Unit (GPU) card. Various hardware configurations were tested to validate the software’s
compatibility and performance (Table. 1). Three commonly used linear cameras with line rates
at 36kHz, 147kHz, and 250kHz were included to show the compatibility of the software [14–16].
Different DACs that were previously used in other OCT studies were also included to show the
hardware expandability [16–19]. Two computers configured with different hardware were built
to benchmark the imaging performance.

The triggering and synchronization clock logic is shown in Fig. 1(B). To synchronize frames
during imaging acquisition and X-Y scanning, the ‘Strobe’ signal of the FG (Xtium-CL MX4) is
used as the master clock signal, which is, in fact, the Horizontal Synchronized (HSync) signal
rerouted from the camera, as depicted in Fig. 1(B). Physically, the master clock is wired from the
FG to a digital input port of the DAC (PCI-6221 or PCIe-6361). To control the galvanometer
scanner, the software initiates an analog output task to update the voltages of two analog outputs
on the DAC based on a pre-generated voltage table. By default, a sawtooth scanning pattern is
used with an adjustable fly-back cycle for different duty cycle operations. However, different
scanning patterns can be supplied by modifying the voltage table. Additionally, the DAC generates
a frame sync signal based on the number of A-scans in each B-Scan; this signal is also physically
wired from a digital output port of the DAC to the FG, as shown in Fig. 1(A). During imaging
acquisition, OCT images are acquired only during forward scanning. For precise synchronization,
the camera is set to external triggering mode, which enables the camera to acquire images entirely
based on the frame sync signal. Both analog (Scanner) and digital (Frame Sync) tasks are
configured to start when the digital input on the DAC detects the rising edge of the master clock
from the FG. This ensures that all hardware is synchronized and starts at the same time. In
case of any potential time delay between the frame sync and the actual galvo scanner’s position,
a tick-based initial time delay can be introduced to the frame sync to accommodate the time
difference.
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Table 1. Configuration and performance of two different hardware platforms. Ts: B-Scan
Acquisition Cycle Time. Tp: B-Scan Processing Time.

5 

and two DACs, PCIe-6361 and PCI-6221 (National Instrument), were tested without modifying 
the source code. Xtium-CL MX4 was used as the main FG to benchmark the performance of 
two PC configurations. Three linear cameras were also tested including OCTOPLUS (Teledyne 
DALSA), AVIIVA SM2 4010 CL (Teledyne DALSA), and GL 2048R (Sensor Unlimited) (Tab. 
1). The buffer of acquired data is stored as a scattered memory in the host memory, thus the 
image size is only limited by the maximum available system memory in the host computer.  
 
The B-Scan processing time includes memory transfer (H2D & D2H) and the time of all 
processing kernels for each B-scan. In our cases, each B-scan has a size of 2048 (the number 
of pixels of the camera) x1000 (the number of A-scan per B-scan). PC2 exhibits significantly 
shorter single B-scan processing times compared to PC1, thanks to the more efficient CPU and 
GPU with larger bandwidth. Most LCDs can display images at 60Hz, corresponding to 16ms 
per frame. It is shown that even in the worst-case scenario, with the Maximum B-scan 
Processing Time shown in Tab. 1, OCTSharp can still support real-time image displaying at 60 
frames per second (FPS) for both configurations, satisfying the requirement of real-time 
monitoring during in vivo imaging.  However, to process every incoming B-scan without 
missing, the B-scan processing time must be less than the B-scan acquisition time, determined 
by the B-scan acquisition rate. For instance, with the duty cycle set at 32.2%, the B-scan 
acquisition times for three cameras operating at line rates of 36kHz, 147kHz, and 250kHz are 
41ms, 5.9ms, and 10ms, respectively, which correspond to B-scan acquisition rates at 24Hz, 
169Hz, and 100Hz. 
 

 
Tab. 1. Configuration and performance of two different hardware platforms. 𝑻𝑻𝒔𝒔: B-Scan Acquisition Cycle Time. 𝑻𝑻𝒑𝒑: 

B-Scan Processing Time. 

 
 
3.2.  Evaluation of CUDA Processing Efficiency 
 

Fig. 1. The configuration of the SD-OCT system. A) The hardware connection and triggering
mechanism of the SD-OCT system. SLED: Super Luminescent LED; C: Collimator; PC:
Polarization Controller; FL: Focusing Lens; M: Mirror; DG: Diffraction Grating; LC: Linear
Camera; FG: Frame Grabber; DMA: Direct Memory Access; DAC: Digital Acquisition Card;
CPU: Central Processing Unit; GPU: Graphical Processing Unit. B) The timing diagram of
the master clock to synchronize the camera using frame sync, and the corresponding timing
of the X-Y galvanometer scanner’s voltage position.
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2.2. Software architecture

Software architecture with multi-threading and GPU-based Compute Unified Device Architecture
(CUDA) implementation is efficient for real-time OCT imaging in C++ [5–9]. OCTSharp
shares a similar architecture but is implemented in C#. The hardware control is achieved using
Software Development Kits (SDKs), including Sapera LT 8.6 from Teledyne DALSA and DAQmx
20.1 from National Instruments [20,21]. To seamlessly interact with the CUDA library in C#,
OCTSharp utilizes ManagedCuda, an open-source API that wraps the CUDA library in C# [22].
ManagedCuda provides a type-safe and object-oriented way to access CUDA resources in a
class-based reference to CUDA API, as opposed to the pointer-oriented manner in C++ or C.
Notably, all CUDA kernels are written in CUDA C and pre-compiled into a dedicated PTX file
using the NVIDIA CUDA Compiler (NVCC) and it is loaded prior to the runtime for real-time
imaging processing.

Figure 2 provides a detailed description of the multi-threading logic with the relationship
between the hardware and software. The FG has a default ring buffer (or cycling buffer) structure
to store raw frames (spectral data) from the camera. A Direct Memory Access (DMA) controller
handles data transfer from the FG to the frame buffer in the host memory. If the ring buffer
becomes filled, it triggers a frame lost event, which is used as a monitor during imaging to alert
potential raw data loss. During imaging acquisition, four dedicated threads are launched on the
CPU by OCTSharp, including the Graphical User Interface (GUI) thread, the transfer thread, the
process thread, and the display thread. The GUI thread primarily manages real-time events, such
as user interactions, visualization of benchmark parameters, and charting updates. The transfer
thread is initiated by a callback function triggered by the frame available signal whenever a frame
is ready in the frame buffer. It then notifies the process thread to commence the OCT imaging
processing pipeline. Additionally, the transfer thread handles the transfer of raw frames from the
frame buffer to a preallocated volume buffer in the host memory when a user requests to save the
raw data before imaging acquisition. After the imaging section, the raw frames in the volume
buffer will be saved automatically to a local drive for post-processing.

Fig. 2. OCTSharp Software Architecture. On-board Ring Buffer: Default FIFO memory
on the FG; DMA: Direct Memory Access; Frame Lost Event: a software event when the
on-board ring buffer overflows; Frame buffer: A buffer for saving a raw B-Scan; Volume
Buffer: A pre-allocated buffer for saving raw C-Scan; H2D: data transfer from the host frame
buffer to the device memory in a GPU; D2H: data transfer from the device memory to a host
page-locked memory; The flash signs represent a software trigger callback event.
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Once the process thread is initiated, a raw frame in the frame buffer is transferred to the device
memory in the GPU, also known as Host to Device (H2D) memory copy. Then, the process
thread launches GPU kernels through ManagedCuda and sequentially processes the raw frame
to an OCT B-Scan image. When the processing is completed, the process thread transfers the
processed data from the device memory to a preallocated and pinned host memory, also known
as Device to Host (D2H) memory copy. Then the Processing Done callback event will initiate
the display thread to update the latest image on the GUI. The GUI thread ensures that monitoring
parameters, such as B-scan processing duration, frame rate, frame loss alerts, etc. are consistently
updated. It should be noted that managed resources are in the scope of the Common Language
Runtime (CLR), which is part of the .NET framework, while unmanaged resources are out of the
scope of CLR. Three major buffers, frame buffer, volume buffer, and display buffer, used for data
transfer are not managed by the CLR.

2.3. Animal handle and ethics

Our previous work demonstrated that OCT is the ideal in vivo imaging modality for lens
regeneration study in newts [23]. In this study, Pleurodeles waltl is used as the animal model for
the in vivo imaging demonstrations of OCTSharp. The protocol has been approved by Miami
University’s Institutional Animal Care and Use Committee (IACUC). Before in vivo imaging, the
animal is anesthetized and positioned on a specialized imaging stage with 6 degrees of freedom.
Water is applied to the cornea during imaging to prevent reflections from dehydration. Imaging
takes around 5 minutes per individual. After the experiment, the animal is returned to its habitat
in the facility.

3. Results and discussion

3.1. Validation of hardware compatibility

Two hardware configurations were used to validate the performance of OCTSharp, as shown in
Table 1. Two CameraLink FGs, Xtium-CL MX4 and Xcelera-CL LX1 (Teledyne DALSA), and
two DACs, PCIe-6361 and PCI-6221 (National Instrument), were tested without modifying the
source code. Xtium-CL MX4 was used as the main FG to benchmark the performance of two PC
configurations. Three linear cameras were also tested including OCTOPLUS (Teledyne DALSA),
AVIIVA SM2 4010 CL (Teledyne DALSA), and GL 2048R (Sensor Unlimited) (Table. 1). The
buffer of acquired data is stored as a scattered memory in the host memory, thus the image size is
only limited by the maximum available system memory in the host computer.

The B-Scan processing time includes memory transfer (H2D & D2H) and the time of all
processing kernels for each B-scan. In our cases, each B-scan has a size of 2048 (the number of
pixels of the camera) x1000 (the number of A-scan per B-scan). PC2 exhibits significantly shorter
single B-scan processing times compared to PC1, thanks to the more efficient CPU and GPU with
larger bandwidth. Most LCDs can display images at 60 Hz, corresponding to 16 ms per frame. It
is shown that even in the worst-case scenario, with the Maximum B-scan Processing Time shown
in Table. 1, OCTSharp can still support real-time image displaying at 60 frames per second
(FPS) for both configurations, satisfying the requirement of real-time monitoring during in vivo
imaging. However, to process every incoming B-scan without missing, the B-scan processing
time must be less than the B-scan acquisition time, determined by the B-scan acquisition rate.
For instance, with the duty cycle set at 32.2%, the B-scan acquisition times for three cameras
operating at line rates of 36kHz, 147kHz, and 250kHz are 41 ms, 5.9 ms, and 10 ms, respectively,
which correspond to B-scan acquisition rates at 24 Hz, 169 Hz, and 100 Hz.
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3.2. Evaluation of CUDA processing efficiency

OCT imaging processing can benefit from the massively parallel execution capability of GPUs to
significantly reduce data processing time. However, CUDA C is typically limited to run natively
in C++ applications and cannot be directly used in C#. APIs like ILGPU allow users to write
GPU-accelerated code in C# with high-level abstraction functions [24]. These APIs utilize a
Just-In-Time (JIT) compiler to translate C# code into corresponding CUDA code at runtime. In
contrast, ManagedCuda directly refers to the original CUDA library and compiles code with the
native NVCC, allowing more fine-grained control over GPU operations. This approach has its
advantages from a software development perspective. While the JIT compiler method eliminates
the need to write CUDA C code, ManagedCuda provides a more generic CUDA referencing
experience yet still preserves the highly efficient performance that is comparable to C++ solutions
[9].

Figure 3 compares the execution times of data transfer of H2D, the CUDA kernels, and D2H.
Regardless of the configuration, PC1 or PC2, the H2D process consumes the most significant
portion of the B-scan processing time, accounting for approximately 32% of the total processing
time. When transferring a 16-bit B-Scan buffer (2048× 1000) with a size of approximately 4.19
megabytes (MB), the average transfer time is approximately 0.79 milliseconds (ms) on PC1 and
0.32 ms on PC2. However, during D2H, when dealing with an 8-bit B-Scan buffer of around 1.04
MB in size, the transfer time is significantly reduced, it takes only 0.08 ms on PC1 and 0.05 ms
on PC2.

Fig. 3. Benchmark of the execution times of all CUDA kernels for a B-Scan with a size of
2048× 1000. H2D: host memory to device memory. D2H: device memory to host memory.
InputCast: datacasting from 16-bit unsigned integer data type to 32-bit float point data type.
OutputCast: datacasting from 32-bit float point data type to 8-bit unsigned integer data type.
DC Removal: the DC background removal of an OCT B-scan. FFT: Fast-Fourier-Transfer
using Cufft handle. Modulus: Calculating the magnitude of the FFT results. Flipping:
B-Scan transposition using Cublas handle. CubicInterp: cubic interpolation for resampling.
The error bar stands for the standard deviation of each kernel.

The different data transfer rates between the H2D and D2H are caused by different memory
transfer mechanisms. The data transfer between host memory and GPU devices requires pinned
or page-locked memory in the host memory. During H2D, the frame buffer in the host is allocated
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by Sapera LT. The frame buffer is recognized by the GPU as a pageable memory. The pageable
memory has to be implicitly converted to a temporary pinned memory, and then the data can be
transferred to the device memory in the GPU. In contrast, during D2H, the buffer for storing the
processed frame data is directly allocated by ManagedCuda as a pinned host memory, which
allows the data to be transferred via the DMA mechanism. The relatively slow peggable memory
transfer mechanism during H2D may become the bottleneck of the processing time, limiting the
real-time B-scan processing speed when the camera speed is further improved in the future. In
this case, it is worth mentioning that OCTSharp is still capable of acquiring high-speed data,
because the imaging acquisition itself is not limited by the H2D mechanism. To resolve the
potential real-time processing bottleneck, a page-locked agreement on the host memory has to
be established between the FG and GPU. One potential solution is adapting FGs that support
NVIDIA GPUDirect, which can transfer the camera raw data directly to the GPU device memory
via DMA, eliminating any potential overhead associated with memory copy between host memory
and GPU memory.

3.3. Garbage collection in C#

Different memory management mechanisms are adapted in C++ and C#. In C++ applications,
memory safety issues, such as buffer overflows or null pointer dereferences, can lead to
unpredictable crashes, or security vulnerabilities. Developers must be diligent in managing
memory properly to avoid these issues. In contrast, C# provides automatic memory management
known as auto GC. The .NET CLR constantly evaluates the life span of the managed objects
and releases unused resources to free the memory when necessary. This automatic memory
management mechanism releases the developer from the hassle of dynamic memory management.
However, GC can stop the managed threads. This is often referred to as “stop the world” or
“pause the world”. To minimize the impact of “stop the world”, the .NET categorizes GC events
into 3 different levels, Gen 0, Gen 1, and Gen 2, where Gen 2 GC is known as a full GC that
takes the longest time to collect all unused objects from all three depth, while the other two levels
take a much shorter time, but they all suspend the managed threads once occur.

Evaluating the impact of GC on OCT real-time imaging display and raw data integrity is
crucial. During imaging, OCT software should display acquired images, typically B-scan
images, in real time to provide feedback to the user. For instance, during in vivo retinal imaging,
ophthalmologists require real-time displayed images to guide patients in capturing images of
specific regions of interest. The image display rate is inherently constrained by the refresh rate
of the LCD utilized in the system. Typically, a frame rate of 30 FPS is sufficient enough for
real-time monitoring. In advanced OCT systems, B-scan images can be acquired at speeds of up
to a few hundred FPS. Not all acquired images are necessary for display, but it is essential to save
all raw data for post-processing tasks such as 3D reconstruction or angiography.

During high-speed image acquisition, the occurrence of GC events is inevitable and can pose
potential risks of frame loss. Figure 4 illustrates the time diagram of B-scan acquisition and
processing cycles with and without GC. To ensure real-time processing of every incoming B-scan,
the B-scan processing time without accounting for GC, denoted as TP, must be shorter than
the B-scan acquisition cycle time, TS, as depicted in the in Fig. 4. For example, for imaging
acquisition with PC2 shown in Table. 1, the maximum B-scan processing time without accounting
GC, TP (2.3 ms), is much less than TS (10 Ts1). Therefore, all acquired images will be timely
processed. However, when GC occurs during an acquisition cycle, managed threads like the
transfer thread or the processing thread will experience interruptions. Consequently, the total
B-scan processing time, TTP, including TP and the interruption time of GC, TGC, can be larger
than TS, shown Ts2 in Fig. 4. The incoming frame in that cycle cannot be processed promptly,
potentially leading to frame loss. Figure 5 plots the histogram of TTP distribution recorded
continuously through three-hour live imaging with PC2 setup. The red vertical line shown in
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Fig. 5 represents the location of TS. Most TTP are between 1.19 ms to 2.19 ms, which is far less
than TS. However, TTP can be significantly longer, up to around 12.3 ms due to GC events and
the variation of data transfer and processing shown in Fig. 3. In about 99.94% of all cycles, TTP
is less than TS. On the other hand, in about 0.06% of cycles, TTP is longer than TS, the case
depicted as Ts2 in Fig. 5. In these cycles, due to overtime B-scan processing time, incoming
frames cannot be processed before the next frame is ready. The next frame may be lost.

Fig. 4. Illustration of the relationship between the acquisition cycle and the processing cycle
of each B-Scan. Tp: B-scan processing time. TGC: Garbage Collection time. TTP: Total
B-scan processing time when GC events occur. Ts1, Ts2 : B-Scan acquisition cycle time.

Fig. 5. The histogram of the Tp for all acquired frames during a 3-hour imaging section
with a B-Scan image size of 2048× 1000 using PC2. Ts is 10 ms as shown by the red-dotted
line, which is equivalent to a B-Scan acquisition rate at 100 Hz.
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In OCTSharp, the potential frame loss due to GC is accommodated from three aspects. First,
we pre-allocate large data buffers, like the frame, volume, and display buffer, as unmanaged
resources to avoid GC2 events; Second, we avoid creating unnecessary objects by reusing them
to reduce the frequency of GC events. As a result, the total time fraction of GC during imaging
acquisition is controlled at less than 0.1% of the total acquisition time. Third, we adopted an FG
(Xtium-XL MX4) with a ring buffer mechanism to queue frames if they cannot be processed
on time. In our case, the FG has an on-board memory space of 512 MB. For a B-Scan with a
size of 2048× 1000, 131 ring buffers are allocated on the FG. When OCTSharp cannot process
the current frame in the frame buffer on time due to GC, the following frames from the camera
will be stored in the ring buffer. Once GC events are completed, all the frames queued in the
ring buffer will be processed based on the FIFO manner. Note the FIFO mechanism can work
effectively only if the time fraction attributed to overtime B-scan processing is very small. If
the time fraction of overtime B-scan processing time is significant, even a sufficiently large ring
buffer that can store all queued images, the images will be displayed with a noticeable time delay
caused by the cumulative overtime events. In our case, the fraction of overtime B-scan processing
time is only 0.06% (Fig. 5). Thus, no frame lost or delayed display occurred during the entire
3-hour live imaging section.

3.4. Software functionality, in vivo imaging demo and expandability

3.4.1. Software functionality

Fig. 6. GUI of OCTSharp that includes the major display windows as well as adjustable
parameters and controls. For more details about the installation and compilation guidelines,
refer to https://github.com/OCTSharpImaging/OCTSharp.

A basic GUI for OCTSharp is illustrated in Fig. 6. With this interface, users can manage hardware
parameters of the camera and galvanometer scanner, set OCT imaging parameters, and select

https://github.com/OCTSharpImaging/OCTSharp
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display modes, including average display, en-face display, and speckle variance display. Raw
data is saved in .raw format for post-processing. The GUI also provides a list of key benchmark
parameters to facilitate optical system alignment, such as spectrum monitoring.

3.4.2. In vivo imaging demo

Human fingernails and the Newt anterior chamber were utilized to showcase the in vivo imaging
performance of OCTSharp in Fig. 7. Given the high scattering properties of human skin [25], in
vivo imaging of the fingernail was conducted using PC2 at 1310 nm, and shown in Fig. 7(A).
Here, the real-time B-Scan of the fingernail shows various tissue structures, including the nail
bed, cuticle, nail fold, nail root, epidermis, and dermis. Subsequently, a C-scan comprising 512
B-scans was acquired and saved. Raw data are post-processed with MATLAB (R2023a) and
the volumetric view is visualized with ImarisViewer (9.9.1, Oxford Instrument) as shown in
Fig. 7(B).

Fig. 7. In vivo images acquired with OCTSharp. A: B-Scan of the fingernail structure inside
the red rectangle area captured with PC2; B: C-Scan perspective view of A; C: Cut-out-view
of the Newt’s anterior chamber inside the red rectangle area captured with PC2; D: Optical
Coherence Tomography Angiography of the Newt’s iris and the surrounding skin tissue,
captured with PC1. Scale bar: 100 µm.

In our previous work, we demonstrated the unique capability of using OCT to in vivo monitor
the lens regeneration process of Newts [26]. Therefore, we continue using this animal model to
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validate the performance of OCTSharp. In particular, we want to test if the raw data captured
by OCTSharp can be used for reconstructing the microvascular network in the iris. Since the
anterior chamber is transparent, we take advantage of the wavelength of PC1 at 850 nm, which
can capture images with lateral and axial resolution at ∼7 µm and the line rate at 250kHz. Five
B-scans are captured at each location, resulting in a total of 5× 512 B-scans, which are saved as
raw data. Figure 7(C) shows the 3D reconstructed anterior chamber of a newt’s eye, highlighting
all morphological tissue structures. Figure 7(D) shows the microvascular network of the iris,
extracted using the speckle variance technique [27]. These images confirm that OCTSharp
can acquire high-quality B-scan images for reconstructing volumetric images of general tissue
structure and the microvasculature of the iris.

3.4.3. Software expandability

OCTSharp is developed as a foundational software platform that can be modified and expanded
based on the application requirements of users. The software itself can be separated into three
major components, including the GUI framework built with .NET, hardware control developed
with Sapera LT and DAQmx, and image processing implemented with ManagedCuda. If a
new camera is adopted, as long as the camera supports Cameralink, the user just needs to
configure a new camera file. To implement additional custom CUDA processing functions,
new functions can be easily added to the same CUDA file along with other kernels in Fig. 3.
A potential limitation of OCTSharp is its dependency on Sapera LT from Teledyne DALSA
and DAQmx from National Instruments for hardware control. However, these SDKs have been
well-documented and well-supported. Lastly, the Microsoft .NET community offers abundant
3rd party API resources, which allows further functional expansion for OCTSharp. For example,
advanced image display features like volume rendering can be achieved using OpenTK [28], and
image-level classification or segmentation can be accomplished with OpenCV [29].

4. Conclusion

In conclusion, OCTSharp is an open-source C#-based platform for real-time OCT software
development. Real-time imaging display and raw data integrity are essential for OCT imaging.
Compared to the commonly used C++ in OCT software development, C# is more user-friendly
and is a memory-safe language. However, doubts have been raised about the suitability of
developing high-performance OCT applications with C# due to the ‘stop the world’ issue induced
by the GC mechanism in C# and the challenge of high-throughput data processing. In this paper,
we addressed these concerns by verifying that OCTSharp can indeed meet the state-of-the-art OCT
imaging requirements. ManagedCuda enables C# to conveniently access GPUs and leverage their
parallel computation capabilities. To overcome the challenges posed by the C# GC mechanism,
we implemented strategies to minimize GC pressure and adopted a frame grabber with a ring
buffer to prevent frame loss. Our test results show that the impact of GC on real-time imaging can
be safely disregarded. These findings reinforce our belief that OCTSharp can be customized for
various applications, greatly simplifying the development of real-time OCT imaging software.
Funding. National Institute of Biomedical Imaging and Bioengineering (R21 EB033993); National Eye Institute
(R21EY031865).
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